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ABSTRACT 

Applying the normalizer theory of finite groups developed in 1989, we undertake 
some questions concerning the theory of formations of finite groups. 

1. Introduction 

The purpose of this note is to study some questions concerning the theory of for- 

mations of finite groups. 

The introduction of the ~)-normalizers of a finite, not necessarily soluble, group 

associated with a Schunck class .~ of the form E~f, for some formation [ in [1] 

provides some new techniques to undertake some old problems, to improve some 

classical results and to give alternative approaches valid not only in the soluble case 

but also in the general case. 

Consider a local formation of finite soluble groups, f say. Carter and Hawkes 

[5] and Doerk [7] have shown that there is a unique full and integrated local def- 

inition F of ~. Doerk has used this definition to prove that the formula 

f l  (/7) = (G E ~ ]  f-normalizers of G belong to F ( p )  ) (p a prime number) 

defines the unique maximal local definition of f in the universe of all finite solu- 

ble groups. 

Doerk, Semetkov and Schmid have posed the problem of whether every local 

formation of finite, not necessarily soluble, groups has a unique maximal local def- 

inition. The answer is negative in general. In fact, F6rster and Salomon [11] have 

obtained local formations without a unique maximal local definition. 

In section 3 we give a description of local formations with a unique maximal lo- 

cal definition (some preliminary observations can be found in [1]). This approach 

is a generalization of Doerk's one in the soluble case. 
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On the other hand, Carter, Fischer and Hawkes [6] have proved that if f is a sat- 

urated formation of finite soluble groups, the unique largest subgroup-closed class 

contained in f is also a saturated formation. Salomon [14] shows that this result 

does not remain true in the general case. In section 3, a description of local for- 

mations f such that the unique largest subgroup-closed class contained in f is also 

a local formation is given, from which examples and counterexamples emerge. 

In section 4 we study the formation generated by a finite group G in terms of 

the formation generated by quotients of G (of a certain type). This result can be 

useful in induction arguments and is an improvement of the main result in [3], 

which is generalized in [12]. 

Finally, we characterize those Schunck classes which are saturated formations 

by means of a property of their boundaries. 

2. Preliminaries 

For the purpose of greater generality, in section 3 we employ the notion of an 

?i-local formation as introduced in [10]. 

Denote by ?i0 the class of all finite simple groups. For any subclass ?i of ?i0 we 

put ?i' = X0\?i and let X(?i) be the cyclic groups in ?i. Occasionally, it will be con- 

venient to denote the group of prime order p simply by p rather than Z v. 
An ?i-formation function f associated to each X E X(X) U X' a formation, pos- 

sibly empty, f(X). If f is an ?i-formation function, then the X-local formation de- 
fined by f, LF~(f), is the class of all finite groups G satisfying the following two 

conditions: 
(1) Aut~(H/K) Ef(p) for all chief factors H/K of G such that the composi- 

tion factor of H/K is an ?i-group the order of which is divisible by p, if p E X(?i) 

(i.e. Zp E X(?i)); and 
(2) G/L Ef(E) whenever G/L is a monolithic quotient of G such that the com- 

position factor of its socle S(G/L) is isomorphic to E, if E E X'. 

Clearly, LF~ (f )  is a formation. 

Any ?i-formation function g such that LF~(f) = LFt(g) is called an ?i-local 
definition of the local formation LFx(f) .  

Consider the ?i-local formation ~ = LF~ (f )  and let F be the X-formation func- 

tion defined by 

f lpQRo(Aut~(H/K) IG E f, H/K ?ip-chief factor of G), 

F(X) = if p E X(X), 

i f X E  ?i', 

where ?ip = (X E XIp divides the order of X) .  
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Clearly, F is an X-local definition of  the local formation LF~( f ) .  We say that 

F is the full and integrated local definition of f (in the sense of  [11], section 1). 

Recall that if f) is a class of groups, the boundary b (~ )  of  f) is defined by 

b (~)  = (G E @ \ ~ l i f  1 :~ N_~ G, then G/NE ~) 

and h (~) is the class of  all groups without quotients in ~ ;  here, and elsewhere in 

this note, @ denotes the class of  all finite groups. Moreover, if b (~ )  consists of  

monolithic groups, denote b~ (~) = (G E b (~) I the composition factor of Soc (G) 

is an ~-group). In particular, i f p  is a prime, 

bv(~) = (G E b(f)) ISoc(G) is a p - g r o u p ) .  

In our discussion of  X-local formations with a unique maximal X-local defini- 

tion, the following definitions and results will turn out to be crucial. 

(2.1) DEFINITION [1 1]. Consider the X-local formation f = LF~(f)  and let F be 

its full and integrated local definition. A group G E bx(f) is called X-dense with 

respect to f, if G E b(F(p)) for each p r imep  E a-(Soc(G)). Further, b( f )  is said 

to be X-wide, if there does not exist an X-dense group G E bx (f). 

In the final step of  an induction argument there frequently appear primitive 

groups. Recall that a primRive group is a group G such that for some maximal sub- 

group U of G, Uo = 1 (where Uc is the intersection of all G-conjugates of U, i.e., 

the unique largest normal subgroup of G contained in U). 

A primitive group is of  one of the following types: 

(I) Soc(G),  the socle of  G, is an abelian minimal normal subgroup of  G, com- 
plemented by U. 

(2) Soc(G) is a non-abelian minimal normal subgroup of G. 

(3) Soc(G) is the direct product of  the two minimal normal subgroups of  G 
which are both non-abelian and complemented by U. 

(2.2) DEFINITIONS [1]. (a) Let M b e  a maximal subgroup of a group G. Then 

the group X = G/MG is a primitive group; we say that M is of type i if X E 

~3i (1 _< i _< 3), where ~i denotes the class of all primitive groups of  type i; and M 

is a monolithic maximal subgroup of G if M is of type 1 or type 2. 

(b) Given a Schunck class ~p, a maximal subgroup U of a group G is called 

~-normal in G if G/UG E ~, and ~-abnormal otherwise. 

(c) Let U, G and ~ be as above. U is a ~-critical in G, if U is a ~-abnormal 

monolithic maximal subgroup of  G and G = UF#(G) where F#(G) = 
Soc(Gmod  ~(G)) .  
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(2.3) THEOREM [I]. For a Schunck class @, the following three statements are 
pairwise equivalent: 

(i) If G @, then G has an @-critical subgroup. 
(ii) @ = E, Q Ro Pr (@) with Pr (4) = @ n 9. Here, '$3 denotes the class of all 

primitive groups. 
(iii) @ = E,f for some formation f. 

(2.4) DEFINITION [I]. Let @ be a Schunck class of the form @ = E*f for some 
formation f and let G be a group. A subgroup D of G is an 4-normalizer of G, if 
there exists a chain of subgroups: 

such that Hi is an @-critical subgroup of Hi-, (i = 1,. . . , n) and such that H, 
contains no @-critical subgroup. 

If G E 4, we interpret the definition to mean D = G. The condition on H,, is 
equivalent to D E @. 

We say that a subgroup D of G is an @-normalizer of G of type 1 if there exists 
a chain (1) such that H, is a maximal subgroup of Hi-, of type 1 for every i. 

Denote by Norq(G) the set of all @-normalizers of G and by Nor4(G), the set 

(possibly empty) of all @-normalizers of G of type 1. 
The reader is referred to [4], [5], [9], [lo] for definitions and basic results in the 

theory of formations and Schunck classes and to [9] for the basic properties of the 
primitive groups. The notation is standard and can be found mainly in [13]. 

3. X-Local formations 

In this section, X denotes a fixed subclass of Xo subject to the following: 

Moreover, f will be an X-local formation with full and integrated local defini- 

tion F: 
Consider the Schunck class @ = E,f and let p be a prime. Define the following 

two classes: 

a l ( p )  = (G ( 0 # N O ~ @ ( G ) ~  n f and NorQ(G)* n f is contained in F ( ~ ) ) ,  

(G 10 = Nor,(G), n f and G E h ( b ( ~ ( p ) )  n f)), if P E XW, 
~ z ( P )  = 

(G 10 = Norq(G)] n f and G E h(b,(f)), if P e X(X), 

where Norq(G)] n f denotes the set of all @-normalizers of G of type 1 which are 
f-groups. 
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Denote by a(p)  = a l (p)  O a2(p) and define f0(p) = Qa(p).  

(3.1) LEMMA. For each prime p, we have fo(p)  n f = F(p) .  

PROOF. It is clear F(p )  c fo (P) n f. Suppose that the equality does not hold 

and take G E ( fo(P) N [) \ F ( p )  of minimal order. Since G E fo(P)  fl f N 

b (F(p)), there exists a group X E a l (p) and a normal subgroup N of X such that 

G = X/N.  Now, if D E Nor~(X)l f) f we have that X = DN. Consequently, G E 
F(p) ,  a contradiction. 

(3.2) LEMMA. Let p be a prime. I f  ~ is a formation contah~ed in fo (p) ,  then 

QRo(F(p)  U ~) is contained in fo(P).  

PROOF. It is enough to prove Ro(F(p)  U ~) C_fo(p) since f0(p) is a homo- 

morph. Suppose Ro(F(p)  U ~) is not contained inf0(p) and take G E Ro(F(p)  t.J 

~)\fo(P) of minimal order. Then, G p t p ) ,  1 ~: G ~ and G ~ a(p) .  Assume that 

Nor¢(G)l I"1 f is non-empty and take D E Nor~(Gh f) f. By [4. Lemma 1.5], 

DG~/G ~ E ~ and DGF(p)/G ptp) E F(p) .  Consequently, D E RoF(p) = F(p)  and 

G E a(p) ,  a contradiction. Therefore, we can assume that Nor~,(G)~ O f is an 

empty set. Since G q~ a(p) ,  we have that either G q~ h ( b ( F ( p ) )  fq f), i fp  E X(X) 

or G q~ h (bp(f)), if p ~ X(X). Suppose p E X(X) and G q~ h (b (F(p))  f3 f). Then, 

there exists a normal subgroup L of G such that G/L E b (F(p) )  (3 f. Now, if 

L fq G F(p) = 1, then G E f, a contradiction. Consequently, we can assume that 

L ('1 G F<p) :/: 1 and then G/L rl G F~p) lies info(p) by minimality of G. Therefore, 

G/L E f o ( p )  fq [ = F(p) ,  a contradiction. Now, i f p  ~ X(X) we argue as in [11, 
Lemma 3.2] to obtain the final contradiction. 

(3.3) TrmOREM. Let f be an X-local formation. Then: f possesses a unique max- 

imal X-local definition (as a formation) i f  and only i f  b(f) is X-wide and for  each 

prime p, there exists a unique maximal formation, g (p) ,  contained in a(p) .  

In this case, the X-formation function gl defined by gl (P) = g(P) for every 

prime p and g l (E)  = h(be(f))  for  every E E X' - • is the maximal X-local 

definition. 

PROOF. First, suppose that f possesses a unique maximal X-local definition, g 

say. Then, b([) is X-wide (cf. [11]). On the other hand, g(p )  0 f is contained in 

F(p) .  So, by [4, Lemma 1.5], g(p )  is contained in a(p)  for each primep. Now, 

let ~ be a formation contained in a(p) .  Applying Lemma (3.2), we see that 

QRo(F(p)  tJ ~) is contained info(p) .  Consider the following X-formation func- 

tion defined by setting 
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t -  

| QRo(F(p) U ~), if p = q, 

gz(q) = ~ F ( q ) ,  I f p  ~: q, 

and g2(E) = g(E) for every E E  X' - •. Applying Lemma (3.1), it is not difficult 

to prove that f = L F ~ ( g 2 ) .  Since g is the unique maximal X-local definition of  f, 

we have that g2(P) c_ g(p). Thus, 8 c_ g(p). Consequently, g(p) is the unique 

maximal formation contained in a(p). 

Conversely, suppose that b(f) is X-wide and for each prime p, there exists a 

unique maximal formation, g(p), contained in a(p). Consider the X-formation 

function gl defined by gl (P) = g(P) for every prime p and gl (E) = h (be(f)) for 

every E E X' -- ~. We shall prove that gl is the maximal X-local definition of [. 

First of all, we need to prove that ~ = LF~(gl). Clearly, f is contained in LF~(gl). 

Suppose the equality does not hold and take G E LF~(g l ) \ f  of  minimal order. 

Then, Soc(G) is a minimal normal subgroup of G and the composition factor of 

Soc(G) is an X-group. Since G E LF2(gl), we have that G/Cc(Soc(G)) E g(p) N 

f c_ F(p) or G E b(F(p)) according to whether Soc(G) is abelian or Soc(G) is 

non-abelian (p E ~r (Soc(G))). In the first case, G E f and in the second one, G is 

an X-dense group. In both cases, we have a contradiction. Therefore, [ = LF~ (g~). 

On the other hand, l e t j  be an X-formation function such that f = LF2(j) .  Ap- 

plying again [4, Lemma 1.5], it is easy to prove that j (p )c_  a(p), for every prime 

p. Therefore, j (p)  c_ g~ (p), for every prime p. Moreover, it is clear that j (E)  is 

contained in g~ (E) for every E E X' - ~. So, g~ is the unique maximal X-local 

definition of f. 

Given a group G, denote by S~ (G) the set of all subgroups H of G such that all 

the composition factors of  H are X-groups and, if ~ is a class of  groups, let ~2 = 

(G ] every H E  Sx(G) is an G-group). It is clear that ~ is the unique largest sub- 

group-closed class such that ~ f) @x c_ ~, where @2 is the class of all groups G 

such that the composition factors of G are X-groups. 

It is known that if i: is an X-local formation, f2 is not an X-local formation in 

general (cf. [14]). The next theorem provides precise conditions to ensure that f2 

is again an X-local formation. 

(3.4) THEOREM. Let [ be an X-local formation. The following statements are 

pairwise equivalent: 

(i) For each primitive group G of type 2 in f2 such that Soc(G) E @2 and for 
every irreducible and faithful GF(p)G-module V, p E r(Soc(G)),  the correspond- 

ing semidirect product [ V] G is an f2-group. 

(ii) For each primitive group G of type 2 in f2 such that Soc(G) E @x, for ev- 

ery irreducible and faithful GF(p)G-module V, p E 7r(Soc(G)), and for every 
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X E Sx (G) such that G = X Soc(G), the semidirect product [ V] X is an f-group. 
(iii) ft is an X-local formation. 

PROOF. (ii) implies (iii). Suppose f = LF~(F),  where F i s  the integrated and 

full X-local definition of [. Define F*(p) = F(p)x for each prime p E X(~) and 

F*(E) = F(E)z  for every E E X'. It is clear that F* is an X-formation function. 

Next, we see that [~ = LF2(F*).  Assume that f2 is not contained in LF2(F*) and 

take G E f2\LF2(F*) of minimal order. With similar arguments to those used in 

[6, Theorem A], we can suppose that G is a monolithic group and Soc(G) is a non- 

abelian group with composition factor in X. Let p be a prime dividing the order 

of N = Soc (G) and let X E $2 (G). Assume that T = XN is a proper subgroup of 

G. Since [~ is subgroup-closed, T E [2 and then T E LF2 (F*) by minimality of G. 

Consequently, T/Chr(N) E F*(p) where Chr(N) is the intersection of the central- 

izers in T of all chief factors of  T below N. Since C~(N) is a p-group (see [10]), 

we have that XC~r(N)/Chr(N ) E St(XChr(N)/C~(N)). Therefore, xCh(N) /  
Chr(N) E F(p) and X E F(p). Now, if X = G then G E F(p) because f is 

X-local and G is primitive. Suppose that X is a proper subgroup of G and consider 

an irreducible and faithful GF(p)G-module V. By (ii), the semidirect product 

P = [V]Xis an f-group and X E  F(p). Therefore, G E F*(p) and G E LF2(F*), 
a contradiction. 

On the other hand, taking into account that LF~(F*) is subgroup-closed, it is 

easy to see that LF~(F*) is contained in f~. So, f2 is an X-local formation. 

Assume (iii) holds. Taking into account the X-local definition of  f2, it is 

clear that if G is a primitive group of type 2 in [2 and Soc(G) E @~, then the 

semidirect product [V]G is an [2-group for every irreducible and faithful 

GF(p)G-module V, p E r (Soc(G)) .  Hence (i) holds. 
Finally, it is clear that (i) implies (ii). 

(3.5) EXAMPLe. Assume X = Xo, the class of  all simple groups, and consider 

the saturated formation [ = (GIA 5 q~ Q(G) ), where As is the alternating group 

of degree 5. If G is a primitive group of type 2 in [~, then every subgroup of 

[V]Xis an [-group, for every subgroup X o f  G such that G = XSoc(G)  and for 

every irreducible and faithful GF(p)G-module V (p E r (Soc(G))). Consequently, 

by (3.4), f~ is a saturated formation. 

4. Schunck classes and formations 

(4.1) DEFINITIONS. (a) [9] Let H/K be a chief factor of  G. Denote: 

~ [ H/K] (G/Ca(H/K)) if H/K is abelian, 

[H/K]*G = [. G/Cc(H/K) if H/K is non-abelian. 
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The primitive group [H/K]*G is the monolithic primitive group associated 

with the chief factor H / K  of  G. 

Note that if H / K  is a non-Frattini chief factor of G and M is a monolithic max- 

imal  subgroup of G supplementing H / K  in G, then G/Mc = [H/K] *G. 

(b) Given a Schunck class (O, a chief factor H / K  of a group G is said to be 

(o-central in G if [ H/K] *G E (O and (o-eccentric otherwise. 

Given a group G, define e(G) = { [F] ( A u t o ( F ) [ F  is a chief factor of G}. 

The following theorem is an improvement of the main result in [3], which is gen- 

eralized in [12]. 

(4.2) THEOREM. Let G be a group and let N be a normal subgroup o f  

G such that N f) ~ (G)  = 1. Denote by XI . . . . .  Xs all monolithic primitive 

groups associated with the chief factors o f  G below N. Then: QRo(G) = 

QRo(XI . . . . .  Xs, QRo(G/N)) .  Moreover, QRo(X1 . . . . .  Xs, QRo(G/N))  = 

R0(X1 . . . . .  Xs, QRo( G/N)) .  

PROOF. Let ~ denote the class QRo(X l . . . . .  Xs, QRo(G/N)).  It is clear that 

c_ QRo( G). 

Let D be an E~8-normalizer of G. Since G/N E E ~ ,  we have that G = DN. On 

the other hand, all chief factors of G below N are E~-central .  Applying [1, The- 

orem 3.4], we see that D covers every chief factor of G below N. Therefore, D cov- 

ers N and G = D E E.~ .  Since G / N  and G / ~ ( G )  are ~-groups and 9 is a 

formation, we have that G E ~. 

Finally, taking into account that the class of all groups H such that every chief 

factor of H below H e is non-Frattini is a formation, it is rather easy to see the 

equality QRo (X1 . . . . .  Xs, QRo (G/N))  = Ro (XI . . . . .  Xs, QRo ( G/N))  holds. 

Consider p is prime and let G be the cyclic group of order p2. The Frattini sub- 

group of G is a cyclic group of order p and G ~ QRo(~(G)).  Consequently, the 

hypothesis on N in the above theorem is essential. 

(4.3) DEH~mON. Let (O be a Schunck class and let p be a prime. Denote 

f ( p )  = Q(G/Ca(H/K)  J G E (O and H / K  is a chief factor of G whose order is 

divisible by p ) .  

A group G E b((o) is said to be dense with respect to (O if G E b ( f ( p ) )  for each 

prime p E r (Soc(G)). Further, b((o) is said to be solubly wide if it does not con- 

tain a dense primitive group of type 1. 

(4.2) REMARK. If (O is a Schunck class with solubly wide boundary, then (O c_ 

g((o) where g((o) = (G J every Frattini chief factor of G is (o-central in G) .  
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PROOF. Suppose that (O is not contained in g((o) and let G be a group in 

(O\g((O). There exists a Frattini chief factor H / K o f  G such that T =  [H/K]*G q~ 

(O. It is clear that T is a primitive group of type 1 in the boundary of  (O which is 

dense with respect to (O, a contradiction. 

(4.3) TrmOREU. Let (O be a Schunck class. Then: (O is a saturated formation i f  
and only i f  b ((O) is solubly wide and consists o f  monolithic groups. 

PROOF. Suppose, first, (O is a Schunck class such that b(,~) is solubly wide and 

consists of monolithic groups. We split the proof into two steps. 

Step 1. (O = E. f  for some formation f. 

We claim that if a group H is not in (O, then H has an (o-critical subgroup. Sup- 

pose not and, among the groups not satisfying the above statement, we choose a 

group G of minimal order. It is clear that O(G) = 1. In the case G E b((o) we 

should have G = MSoc(G)  = MF# (G) for some monolithic maximal subgroup 

M of G. Therefore, M is (o-critical in G, a contradiction. Hence, there exists a min- 

imal normal subgroup N of G such that G / N  ~ (O. Let M / N  be an (o-critical sub- 

group of G/N. If F* = F#(GmodN) ,  we have that F#(G) = F* (7 C3(N), where 

C3(N) = NCc(N) .  Now, N is an ~p-central chief factor of G. Thus, G/C3(N)  

is an (o-group. Since G does not contain (o-critical subgroups, we have that 

F#(G) < M. Let H / K  be a chief factor of G such that F#(G)  _< K < H <  F*, 

K_< M and G = MH. Then, the primitive group G/MG is isomorphic to [H/K]* G. 
On the other hand, HC~(N) /KC3(N)  is a chief factor of G which is G-isomor- 

phic to H/K. Since G/C3(N)  is an (o-group, every chief factor of G/C3(N)  is 

(o-central in G/C3(N) .  This means that HC3(N) /KC~(N)  is (o-central in G. 

Therefore, G/MG is an (o-group, a contradiction. Thus, if a group H is not in (O, 

then H has a (o-critical subgroup. Applying (2.3), we have (O = E, f  for some for- 

mation f. 

Step 2. (O =f((o) ,  wheref((o) = (GIe(G) c_ (O) is a formation. 

Combination of  a result of  Barnes and Kegel [2] with step 1 shows that (O = 

E~,((O). next, we prove that f((o) is saturated. Let G be a group such that G~ 
• (G) Ef((O). Since G is an (0-group and (O c_ g((o) by (4.2), every chief factor of 

G below ~(G)  is (o-central in G. Therefore, e(G) ~ (O and G Ef((O). 

Conversely, if (O is a saturated formation, it is clear that b((o) consists of mono- 

lithic groups and, because of the celebrated Gaschiitz-Lubeseder-Schmid theorem, 

is solubly wide. 
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(4.4) EXAMVLE. Every Schunck class whose boundary consists of primitive 

groups of type 2 is a saturated formation. 
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