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ABSTRACT
Applying the normalizer theory of finite groups developed in 1989, we undertake
some questions concerning the theory of formations of finite groups.

1. Introduction

The purpose of this note is to study some questions concerning the theory of for-
mations of finite groups.

The introduction of the $-normalizers of a finite, not necessarily soluble, group
associated with a Schunck class $ of the form E,f, for some formation f in [1]
provides some new techniques to undertake some old problems, to improve some
classical results and to give alternative approaches valid not only in the soluble case
but also in the general case.

Consider a local formation of finite soluble groups, { say. Carter and Hawkes
[5] and Doerk [7] have shown that there is a unique full and integrated local def-
inition F of f. Doerk has used this definition to prove that the formula

Silp) = (G €S | f-normalizers of G belong to F(p) ) (p a prime number)

defines the unique maximal local definition of f in the universe of all finite solu-
ble groups.

Doerk, Semetkov and Schmid have posed the problem of whether every local
formation of finite, not necessarily soluble, groups has a unique maximal local def-
inition. The answer is negative in general. In fact, Forster and Salomon [11] have
obtained local formations without a unique maximal local definition.

In section 3 we give a description of local formations with a unique maximal lo-
cal definition (some preliminary observations can be found in {1]). This approach
is a generalization of Doerk’s one in the soluble case.
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On the other hand, Carter, Fischer and Hawkes [6] have proved that if f is a sat-
urated formation of finite soluble groups, the unique largest subgroup-closed class
contained in { is also a saturated formation. Salomon [14] shows that this result
does not remain true in the general case. In section 3, a description of local for-
mations f such that the unique largest subgroup-closed class contained in f is also
a local formation is given, from which examples and counterexamples emerge.

In section 4 we study the formation generated by a finite group G in terms of
the formation generated by quotients of G (of a certain type). This result can be
useful in induction arguments and is an improvement of the main result in [3],
which is generalized in [12].

Finally, we characterize those Schunck classes which are saturated formations
by means of a property of their boundaries.

2. Preliminaries

For the purpose of greater generality, in section 3 we employ the notion of an
¥-local formation as introduced in [10].

Denote by X, the class of all finite simple groups. For any subclass ¥ of X, we
put ¥’ = ¥,\¥ and let X (¥) be the cyclic groups in ¥. Occasionally, it will be con-
venient to denote the group of prime order p simply by p rather than Z,.

An X-formation function f associated to each X € X(¥X) U X’ a formation, pos-
sibly empty, f(X). If fis an ¥-formation function, then the ¥-/ocal formation de-
fined by f, LFx(f), is the class of all finite groups G satisfying the following two
conditions:

(1) Autg(H/K) € f(p) for all chief factors H/K of G such that the composi-
tion factor of H/K is an X-group the order of which is divisible by p, if p € X(¥)
(.e. Z, € X(¥X)); and

(2) G/L € f(E) whenever G/L is a monolithic quotient of G such that the com-
position factor of its socle S(G/L) is isomorphic to E, if £ € X".

Clearly, LF;(f) is a formation.

Any X-formation function g such that LFy(f) = LFx(g) is called an X-local
definition of the local formation LFy(f).

Consider the %-local formation f = LFy(f) and let F be the X-formation func-
tion defined by

®,0Ro(Autg(H/K)|G € §, H/K ¥%,-chief factor of G),
F(X) = if p € X(%),
f, if Xe¥x,

where ¥, = (X € ¥|p divides the order of X).



Vol. 73, 1991 REMARKS ON FORMATIONS 99

Clearly, Fis an ¥-local definition of the local formation LF;(f). We say that
F is the full and integrated local definition of f (in the sense of [11], section 1).
Recall that if $ is a class of groups, the boundary b(9) of 9 is defined by

b(9) = (G € ®\$|if | # N <G, then G/N € 9)

and A (9) is the class of all groups without quotients in §; here, and elsewhere in
this note, @ denotes the class of all finite groups. Moreover, if () consists of
monolithic groups, denote bx($) = (G € b (D) | the composition factor of Soc(G)
is an X-group). In particular, if p is a prime,

b, (D) = (G € b(9) |Soc(G) is ap-group).

In our discussion of ¥-local formations with a unique maximal X-local defini-
tion, the following definitions and results will turn out to be crucial.

(2.1) DeriNtTION {11].  Consider the X-local formation f = LFy(f) and let F be
its full and integrated local definition. A group G € bx(f) is called X-dense with
respect to {, if G € b{F(p)) for each prime p € n(Soc(G)). Further, b(f) is said
to be X-wide, if there does not exist an ¥-dense group G € bx(f).

In the final step of an induction argument there frequently appear primitive
groups. Recall that a primitive group is a group G such that for some maximal sub-
group U of G, Ug = 1 (where Uy is the intersection of all G-conjugates of U, i.e.,
the unique largest normal subgroup of G contained in U).

A primitive group is of one of the following types:

(1) Soc(G), the socle of G, is an abelian minimal normal subgroup of G, com-
plemented by U.

(2) Soc(G) is a non-abelian minimal normal subgroup of G.

(3) Soc(G) is the direct product of the two minimal normal subgroups of G
which are both non-abelian and complemented by U.

(2.2) DEerInNITIONS [1].  (a) Let M be a maximal subgroup of a group G. Then
the group X = G/M,; is a primitive group; we say that M is of type i if X €
B; (1 =i=<3), where B; denotes the class of all primitive groups of type i; and M
is a monolithic maximal subgroup of G if M is of type 1 or type 2.

(b) Given a Schunck class $, a maximal subgroup U of a group G is called
$-normal in G if G/Ug € O, and H-abnormal otherwise.

(c) Let U, G and 9 be as above. U is a -critical in G, if U is a H-abnormal
monolithic maximal subgroup of G and G = UF#(G) where F#(G) =
Soc(Gmod $(G)).
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(2.3) TueOREM [1]. For a Schunck class ©, the following three statements are
pairwise equivalent:

() If G & 9, then G has an ©-critical subgroup.

(ii) = EsQ Ry Pr(9) with P1(9) = D N P. Here, P denotes the class of all
primitive groups.

(iii) O = Esf for some formation §.

(2.4) DeFInNtTION [1].  Let © be a Schunck class of the form © = Esf for some
formation f and let G be a group. A subgroup D of G is an $-normalizer of G, if
there exists a chain of subgroups:

(1) D=H,<H, | <---=sH <=H,=G

such that H; is an 9-critical subgroup of H;_, (i = 1,...,n) and such that H,
contains no -critical subgroup.

If G € §, we interpret the definition to mean D = G. The condition on H, is
equivalent to D € 9.

We say that a subgroup D of G is an $-normalizer of G of type 1 if there exists
a chain (1) such that H; is a maximal subgroup of H;_, of type 1 for every i.

Denote by Norg(G) the set of all $-normalizers of G and by Norg(G), the set
(possibly empty) of all $-normalizers of G of type 1.

The reader is referred to [4], [5], [9], [10] for definitions and basic results in the
theory of formations and Schunck classes and to [9] for the basic properties of the
primitive groups. The notation is standard and can be found mainly in [13}.

3. X-Local formations
In this section, ¥ denotes a fixed subclass of ¥, subject to the following:

HypoTHEsIs. X(X) € X.

Moreover, f will be an ¥-local formation with full and integrated local defini-
tion F.

Consider the Schunck class $ = Ef and let p be a prime. Define the following
two classes:

a{p)= (G I @ # Norg(G), N f and Norg(G), N { is contained in F(p)),
» (G| @ =Norg(G),Nfand G h(B(F(p) NH), ifpe€XF,
a =
2P (G| @ =Norg(G), Nfand G € h(b,(H), if p & X(%),

where Norg (G), N § denotes the set of all H-normalizers of G of type 1 which are
f-groups.
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Denote by a(p) = a,(p) U a,(p) and define fo(p) = Qa(p).
(3.1) LemMmA. For each prime p, we have fo(p) N | = F(p).

Proor. It is clear F(p) S fo(p) N {. Suppose that the equality does not hold
and take G € (fo(p) N H\F(p) of minimal order. Since G € fo(p) N fN
b(F(p)), there exists a group X € a, (p) and a normal subgroup N of X such that
G = X/N. Now, if D € Norg (X), N f we have that X = DN. Consequently, G €
F(p), a contradiction.

(3.2) LEMMA. Let p be a prime. If & is a formation contained in fo(p), then
QR (F(p) U Q) is contained in fy(p).

Proor. It is enough to prove Ry (F(p) U &) € fo(p) since fo(p) is a homo-
morph. Suppose Ry (F(p) U &) is not contained in fy( p) and take G € Ry(F(p) U
D\ fo(p) of minimal order. Then, GF® % 1 # G* and G & a(p). Assume that
Norg(G), N f is non-empty and take D € Norg(G), N {. By [4. Lemma 1.5],
DGY/G* € £ and DGFP/GFP € F(p). Consequently, D € RyF(p) = F(p) and
G € a(p), a contradiction. Therefore, we can assume that Norg(G); N f is an
empty set. Since G € a(p), we have that either G & h(b(F(p)) N{), if p € X (%)
or G& h(by,(), if p € X (X). Suppose p € X(X) and G & A(b(F(p)) N{). Then,
there exists a normal subgroup L of G such that G/L € b(F(p)) N {. Now, if
LN GF® =1, then G € {, a contradiction. Consequently, we can assume that
LN GFP £ 1 and then G/L N GFP lies in f;(p) by minimality of G. Therefore,
G/L € fy(p) N§ = F(p), a contradiction. Now, if p & X (¥) we argue as in [11,
Lemma 3.2] to obtain the final contradiction.

(3.3) THEOREM. Let | be an X-local formation. Then: | possesses a unique max-
imal X-local definition (as a formation) if and only if b(f) is X-wide and for each
prime p, there exists a unique maximal formation, g(p), contained in a(p).

In this case, the X-formation function g, defined by g,(p) = g(p) for every
prime p and g,(E) = h(bg({)) for every E € X' — P is the maximal %-local
definition.

Proor. First, suppose that f possesses a unique maximal X¥-local definition, g
say. Then, b(f) is ¥-wide (cf. {11]). On the other hand, g(p) N { is contained in
F(p). So, by [4, Lemma 1.5], g(p) is contained in a(p) for each prime p. Now,
let £ be a formation contained in a(p). Applying Lemma (3.2), we see that
QR (F(p) U Q) is contained in fo(p). Consider the following X-formation func-
tion defined by setting
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{QRO<F(p) uw, ifp=gq
g(q) =
F(q), Ifp+gq,

and g,(E) = g(E) for every E € ¥’ — P. Applying Lemma (3.1), it is not difficult
to prove that { = LFx(g,). Since g is the unique maximal ¥-local definition of f,
we have that g,(p) € g(p). Thus, £ € g(p). Consequently, g(p) is the unique
maximal formation contained in a(p).

Conversely, suppose that b(f) is ¥-wide and for each prime p, there exists a
unique maximal formation, g(p), contained in a(p). Consider the ¥-formation
function g, defined by g, (p) = g(p) for every prime p and g,(E) = h(be(f)) for
every E € ¥’ — P. We shall prove that g, is the maximal ¥-local definition of f.
First of all, we need to prove that { = LFy(g;). Clearly, { is contained in LFy(g,).
Suppose the equality does not hold and take G € LFy(g}\f of minimal order.
Then, Soc(G) is a minimal normal subgroup of G and the composition factor of
Soc(G) is an X-group. Since G € LF4(g,), we have that G/Cs(Soc(G)) € g(p) N
f< F(p) or G € b(F(p)) according to whether Soc(G) is abelian or Soc(G) is
non-abelian (p € 7{Soc(G))). In the first case, G € f and in the second one, G is
an X-dense group. In both cases, we have a contradiction. Therefore, f = LFy(g;).

On the other hand, let j be an ¥-formation function such that f = LF;(j). Ap-
plying again [4, Lemma 1.5], it is easy to prove that j( p) € a(p), for every prime
». Therefore, j(p) S g,{p), for every prime p. Moreover, it is clear that j(E) is
contained in g,(E) for every £ € ¥’ — PP. So, g, is the unique maximal ¥-local
definition of {.

Given a group G, denote by Sy(G) the set of all subgroups H of G such that all
the composition factors of H are ¥-groups and, if R is a class of groups, let £; =
(G | every H € S¢(G) is an B-group). It is clear that & is the unique largest sub-
group-closed class such that & N @ € &, where © is the class of all groups G
such that the composition factors of G are X-groups.

It is known that if { is an ¥-local formation, f is not an X-local formation in
general (cf. [14]). The next theorem provides precise conditions to ensure that fy
is again an ¥-local formation.

(3.4) THEOREM. Let | be an X-local formation. The following statements are
pairwise equivalent:

(i) For each primitive group G of type 2 in {y such that Soc(G) € ®¢ and for
every irreducible and faithful GF(p)G-module V, p € 7 (Soc(G)), the correspond-
ing semidirect product [V ]G is an jx-group.

(iiy For each primitive group G of type 2 in fy such that Soc(G) € Gy, for ev-
ery irreducible and faithful GF (p)G-module V, p € n(Soc(G)), and for every
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X € 8¢(G) such that G = X Soc(G), the semidirect product [V1X is an §-group.
(iii) fy is an X-local formation.

Proor. (ii) implies (iii). Suppose f = LFy(F), where F is the integrated and
full X-local definition of {. Define F*(p) = F(p)y for each prime p € X(¥) and
F*(E) = F(E)g for every E € ¥'. It is clear that F* is an ¥-formation function.
Next, we see that fy = LF;(F*). Assume that fy is not contained in LF5(F*) and
take G € fx\LF3(F*) of minimal order. With similar arguments to those used in
[6, Theorem A], we can suppose that G is a monolithic group and Soc(G) is a non-
abelian group with composition factor in X. Let p be a prime dividing the order
of N =Soc(G) and let X € Sx(G). Assume that T = XN is a proper subgroup of
G. Since fy is subgroup-closed, T € f; and then T € LF(F*) by minimality of G.
Consequently, T7/CE(N) € F*(p) where C£(N) is the intersection of the central-
izers in T of all chief factors of T below N. Since CZ(N) is a p-group (see [10]),
we have that XCE(N)/CE(N) € Sz(XCE(N)/CE(N)). Therefore, XCE(N)/
Cf(N) € F(p) and X € F(p). Now, if X = G then G € F(p) because f is
¥-local and G is primitive. Suppose that X is a proper subgroup of G and consider
an irreducible and faithful GF(p)G-module V. By (ii), the semidirect product
P =[V]Xis an f-group and X € F(p). Therefore, G € F*(p) and G € LF,(F*),
a contradiction.

On the other hand, taking into account that LFy (F*) is subgroup-closed, it is
easy to see that LFy(F™) is contained in fy. So, fy is an ¥-local formation.

Assume (iii) holds. Taking into account the X¥-local definition of fy, it is
clear that if G is a primitive group of type 2 in f; and Soc(G) € ®y, then the
semidirect product [V]G is an fy-group for every irreducible and faithful
GF(p)G-module V, p € n(Soc(G)). Hence (i) holds.

Finally, it is clear that (i) implies (ii).

(3.5) ExamprLe. Assume ¥ = ¥,, the class of all simple groups, and consider
the saturated formation f = (G| As & Q(G) ), where A is the alternating group
of degree 5. If G is a primitive group of type 2 in fg, then every subgroup of
[V]1X is an f-group, for every subgroup X of G such that G = X Soc(G) and for
every irreducible and faithful GF(p)G-module V (p € 7 (Soc(G))). Consequently,
by (3.4), f¢ is a saturated formation.

4. Schunck classes and formations
(4.1) DEerNITIONS. (@) [9] Let H/K be a chief factor of G. Denote:

[H/K] (G/C;(H/K)) if H/K is abelian,

(H/K1*G = )
G/Cs(H/K) if H/K is non-abelian.
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The primitive group [H/K]*G is the monolithic primitive group associated
with the chief factor H/K of G.

Note that if H/K is a non-Frattini chief factor of G and M is a monolithic max-
imal subgroup of G supplementing H/K in G, then G/M; = [H/K]*G.

(b) Given a Schunck class 9, a chief factor H/K of a group G is said to be
9-central in G if [H/K]*G € $ and $-eccentric otherwise.

Given a group G, define e(G) = ( [F](Autg(F) IFis a chief factor of G].

The following theorem is an improvement of the main result in [3], which is gen-
eralized in [12].

(4.2) THEOREM. Let G be a group and let N be a normal subgroup of
G such that N N ®(G) = 1. Denote by X,,...,X; all monolithic primitive
groups associated with the chief factors of G below N. Then: QRy(G) =
QRy(X,,...,X;, ORo(G/N)). Moreover, QRy(X,,...,X;, QRy(G/N))
Ro(X,,..., X5, QRy(G/N)).

Proor. Let £ denote the class QR (X, ..., X, QRy(G/N)). 1t is clear that
L € QRy(G).

Let D be an Eg@-normalizer of G. Since G/N &€ E3®, we have that G = DN. On
the other hand, all chief factors of G below N are Ey8-central. Applying {1, The-
orem 3.4], we see that D covers every chief factor of G below N. Therefore, D cov-
ers N and G = D € EzL. Since G/N and G/®(G) are £-groups and £ is a
formation, we have that G € &

Finally, taking into account that the class of all groups H such that every chief
factor of H below H? is non-Frattini is a formation, it is rather easy to see the
equality QR (X}, ..., X, QRy(G/N)) = Ro( X, ..., X, QRo(G/N)) holds.

Consider p is prime and let G be the cyclic group of order p2. The Frattini sub-
group of G is a cyclic group of order p and G & QRo(®(G)). Consequently, the
hypothesis on N in the above theorem is essential.

(4.3) DeriniTiON. Let  be a Schunck class and let p be a prime. Denote
f(p) = Q(G/Cs(H/K) |G € $ and H/K is a chief factor of G whose order is
divisible by p).

A group G € b(9) is said to be dense with respect to 9 if G € b(f(p)) for each
prime p € w(Soc(G)). Further, b(9) is said to be solubly wide if it does not con-
tain a dense primitive group of type 1.

(4.2) Remark. If §is a Schunck class with solubly wide boundary, then $ <
2(9) where g(9) = (G [ every Frattini chief factor of G is ©-central in G).
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Proor. Suppose that $ is not contained in g(9) and let G be a group in
O\g(9). There exists a Frattini chief factor H/K of G such that T = [H/K]*G ¢&
9. It is clear that T is a primitive group of type 1 in the boundary of § which is
dense with respect to 9, a contradiction.

(4.3) THEOREM. Let § be a Schunck class. Then: O is a saturated formation if
and only if b(9) is solubly wide and consists of monolithic groups.

ProoF. Suppose, first, O is a Schunck class such that b($) is solubly wide and
consists of monolithic groups. We split the proof into two steps.

Step 1. © = E4f for some formation f{.

We claim that if a group H is not in , then H has an 9-critical subgroup. Sup-
pose not and, among the groups not satisfying the above statement, we choose a
group G of minimal order. It is clear that ®(G) = 1. In the case G € b(9H) we
should have G = M Soc(G) = MF#(G) for some monolithic maximal subgroup
M of G. Therefore, M is H-critical in G, a contradiction. Hence, there exists a min-
imal normal subgroup N of G such that G/N & 9. Let M/N be an $-critical sub-
group of G/N. If F* = F#(Gmod N), we have that F#(G) = F* N C5(N), where
C&(N) = NCg(N). Now, N is an ©-central chief factor of G. Thus, G/C&(N)
is an -group. Since G does not contain P-critical subgroups, we have that
F#(G) < M. Let H/K be a chief factor of G such that F#(G) < K < H < F*,
K < M and G = MH. Then, the primitive group G/Mj; is isomorphic to [ H/K]1*G.
On the other hand, HCS(N)/KCE(N) is a chief factor of G which is G-isomor-
phic to H/K. Since G/C&(N) is an ©-group, every chief factor of G/CZ(N) is
9-central in G/C5(N). This means that HC5(N)/KC5(N) is H-central in G.
Therefore, G/M; is an -group, a contradiction. Thus, if a group H is not in §,
then H has a $-critical subgroup. Applying (2.3), we have § = Esf for some for-
mation f.

Step 2. © = f(9), where f(D) = (Gle(G) c @) is a formation.

Combination of a result of Barnes and Kegel [2] with step 1 shows that § =
E4 (D). next, we prove that f(9) is saturated. Let G be a group such that G/
®(G) € f(9). Since G is an H-group and P < g(D) by (4.2), every chief factor of
G below ®(G) is O-central in G. Therefore, e(G) € $ and G € f(9).

Conversely, if § is a saturated formation, it is clear that () consists of mono-
lithic groups and, because of the celebrated Gaschiitz-Lubeseder-Schmid theorem,
is solubly wide.
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(4.4) ExampLE. Every Schunck class whose boundary consists of primitive
groups of type 2 is a saturated formation.
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